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CHAPTER 1

Introduction
Outlining the clear relationship 
between data reliability and 
business impact



We’ve led data and software teams at Google, GWI, Pleo, and Monzo and spoken with
thousands of data teams over the past years. Over again we see the same struggles from
data teams – they lack a framework to support the growing expectations of use cases
from data in their companies.

More is expected from data teams

Data is increasingly used for business-critical use cases

Data has evolved from being a nice-to-have to becoming a critical component of core
business processes.

Data used for decision-making is important and if data is incorrect it may lead to wrong
decisions and over time a loss of trust in data. But data-forward businesses have data
that is truly business-critical. If this data is wrong or stale you have a hair-on-fire
moment and there is an immediate business impact: Tens of thousands of customers
may get the wrong email as the reverse ETL tool is reading from a stale data model.
You’re reporting incorrect data to regulators and your C-suite can be held personally
liable. Or your forecasting model is not running and hundreds of employees in customer
support can’t get their next shift schedules before the holidays

Data stacks are getting more complex

15% of dbt projects have more than 1,000 models, and 5% have more than 5,000 models.
These aren’t just large numbers—they represent growing data ecosystems connected to
hundreds of upstream data sources and feeding hundreds of downstream destinations.
Data Mesh has gained traction as a solution for scaling data work but teams struggle
translating the principles into actions.

This scale comes at a cost. Velocity and agility slows, creating frustration both inside and
outside the data team. Collaboration becomes harder as no one is familiar with the entire
code base. Time spent in meetings goes up relative to time spent getting things done.
Quality becomes harder to enforce over a growing surface area and user-reported errors
increase. And SLA achievements decline as more jobs fail, but no amount of retros seems
to reverse this trend.

Lack of testing framework

The root cause of this is that data teams are not well-equipped to take a strategic
approach to building reliable data. This means that tests are placed sporadically without
much consideration of the use case of the data and that ownership is unclear creating
‘broken windows’ of tests that are left failing too long.
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As a consequence, data teams drown in alert, stakeholders are the first to discover
issues, and the belief in the impact of testing starts to lose its impact.

The Data Product Reliability Workflow

We recommend you think systemically about the reliability of your data stack through a
5-step framework – from defining data use cases as products, setting ownership &
severity, deploying strategic tests & monitors, and establishing quality metrics. We call it
The Data Product Reliability Workflow

In this guide, we’ll work you through actionable steps you can take to adopt the Data
Reliability Workflow at your company, including specific examples, tips & tricks, and
considerations.

● Chapter 2 – Setting expectations: A framework to define data products to
manage tiers of data assets and SLAs for maintenance.

● Chapter 3 – Proactive testing & monitoring: We build a testing and monitoring
framework that maximizes errors caught and minimizes alerts.

● Chapter 4 – Ownership with rapid response: Developing scalable ownership and
efficient incident management processes to quickly resolve issues.

● Chapter 5 – Continuous improvement: Establishing feedback loops and learning
processes to continuously enhance data reliability practices.

Reliable data isn’t just an operational requirement, it’s a competitive advantage. By
prioritizing trust and quality, your team will be trusted by owning critical processes and
moving faster.

Happy reading!

4



CHAPTER 2

Setting 
Expectations
A framework to define data 
products to manage tiers of data 
assets and SLAs for maintenance.



A data product is a group of data assets structured based on their use case. If you define
your data products well, everything follows. Ownership becomes clear, it guides your
testing and monitoring strategy, and you can manage and maintain SLAs in a way that’s
consistent with data consumers’ expectations.

The building blocks of a data product – ownership, prioritization, code & logic, tests, documentation, and
metrics.

A data product rarely works in isolation but most often relies on input, either other data
products or data directly from operational systems. Therefore, expectations for the data
product should be set depending on its entire lineage.

In this chapter, we’ll look at everything you need to know to get started with data
products – from identifying and defining them to determining their priority and setting
SLAs.

Case Study: How data products helped Aiven untangle their spaghetti lineage

The data team at Aiven, the open-source AI & data platform, struggled with
untangling dependency across their data stack with more than 900 dbt models.
Circular dependencies meant that it was difficult to make sense of the lineage
which slowed down root cause analysis and made it difficult to make
system-design decisions. It was particularly difficult for their core data products
with hundreds of dependencies such as the ARR calculation, which is one of the
most important metrics provided by the data team.

By encapsulating data products across data-producing and consuming domains, they
could clearly understand the lineage, and instead of having to understand hundreds of
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upstream tables, they could visualize and understand the line through the lens of just a
handful of data products.

With this at hand, they can trace back an issue to a faulty upstream data product and
easily identify its owner for escalation, or see which data products are impacted
downstream from an upstream failure–all without everyone needing to understand all the
internals of each data product.

Another benefit is that system design issues stand out, so for example, if a circular
dependency is introduced, it’s much easier to understand it across a few dozen data
products instead of a spaghetti lineage of hundreds of data models.

Identifying your data products
If you can identify the most critical business processes your data team supports, those
are most often the data products you should identify. If you’re unsure which ones they
are, look for these signals such as what was impacted in your most recent critical data
failure, or which data assets have the highest usage across your company.

Here are some examples of what can make up a data product:

● A set of dbt models and metrics within a specific dbt folder, like a finance mart

● A group of dbt models linked by an exposure, for instance, models used by a
customer lifetime value (CLTV) model that powers marketing automation

● A selected collection of dashboards in a BI tool, such as core KPI reporting

At SYNQ, we think about our data products as either producer or consumer products.
Producer data products are read from operational systems (e.g., API or SalesForce data)
and owned by data or platform engineers. Encapsulating them in data products provides
an easy-to-understand getaway for downstream teams to escalate issues upstream
without grasping the full complexity of the internals of the data products. Consumer data
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products directly expose data to consumers and read from other data products or assets
(e.g., CLTV or Marketing Attribution Model), often owned by data analysts or scientists.
Encapsulating these in data products gives everyone a good understanding of the direct
impact of issues and which stakeholders should be notified.

The number of data products is highly dependent on your company’s size and
complexity. Some companies have dozens or hundreds of data products while others
have just a handful. Start small, by identifying a handful of your most important data
products, and then build out from there.

Case study: Establish the right granularity when identifying data products

The data team at Aiven started with high-level products such as Sales and
Marketing but realized they needed to go a step deeper to have the most impact.
“If the Marketing data product has an issue, that may be fine. However, if the
Attribution data product within Marketing has an issue, we must immediately jump
on it. This is the level of detail our data products need to be able to capture.” -
Stijn, Data Engineering Manager

Defining your data products
Once you’ve identified your data products, the next step is to define them. When defining
your data products, we recommend following these five steps:

1. Data products should be defined as close to where they’re used as possible to
reflect the experience of the data consumer

2. Data products should take into account upstream dependencies as far upstream
as possible to give a complete overview

3. Data products should have an owner responsible for the operations during their
entire lifecycle such as continuous monitoring to ensure quality and availability

4. Data products should have a priority assigned indicating their importance (P1, P2,
…)

5. Data products should have a description so that people with less context can
understand it’s use case

As you scale your data products, you can group them into domains to make it easier to
manage them. We recommend you keep data products as focused as possible – for
example, it’s never a good idea having a data product consist of many hundreds of assets
as it will create a web of interdependencies.
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Case study: Group data products into related domains

The data team at Aiven groups data products into business groups such as Sales,
Finance, and Marketing as well as Core and API for more technical data products.
“With this at hand, we can monitor the health across different groups to get a
high-level overview, while also zooming into specific data products. This is also
helpful for us when mapping priority–for example, our Attribution Marketing
product is P1 while our Market Research product is P3.” - Stijn, Data Engineering
Manager

The definitions of data products should follow existing workflows. For example, if you
already have a process for defining asset ownership and priority, this will also fit data
product definitions.

At SYNQ, we take a pragmatic approach. Producer data products are defined based on
specific assets such as Postgres tables and dbt sources. Intermediate data products are
defined in code through dbt metadata tags and groups. Consumer data products are
defined through their folder structure in dbt and Looker which resembles their use cases.

version: 2

data_products:

- name: marketing_attribution

description: >

This data product includes models for tracking marketing attribution

across various channels. It powers the Marketing Attribution Dashboard

and is critical for assessing campaign performance and optimizing

marketing spend.

owner:

name: marketing_data_team

slack_channel: "#marketing-data-team"

priority: P1

assets:

- name: dim_marketing_campaigns

- name: fct_channel_performance

- name: fct_attribution_model
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While you’ll want visibility into the data product’s dependencies as far upstream as
possible, we don't recommend managing this manually. It’s not uncommon to have
hundreds of dependencies upstream of a data product, and new dependencies can be
added without the data product owner being aware of it. Instead, you should rely on
automated lineage toolings such as those from a data catalog, dbt, or a data reliability
platform.

Determining the priority of data products
As you identify your data products, you should carefully consider their priority. This
serves as a guiding principle for key data product workflows: How soon should issues be
addressed, do they require an on-call schedule and what’s a reasonable SLA.

Determining the priority of your data products is significantly easier if you’ve defined
your data products at the right level of granularity. For example, if you’ve defined an
entire product as Marketing, many people will have a different take on its priority. But if
you’ve split Marketing into Market Research, Attribution Reporting, and CLTV
calculations, some will naturally be more important than others.

At SYNQ, we use the following priority levels:

● Product operations (P1) when a user-facing operational system runs queries
against the dataset. The data is either directly displayed to the customer or
powers product internals (such as our anomaly engine), with a direct impact on
the functionality of our product.

● Client exports (P2) when a given dataset is shared with any customer in an
“offline” or ad-hoc manner, which isn’t operational but could still impact the
customer directly.

● Business critical workflows (P2) when analytical data feeds other operational
systems with indirect impact on customers such as marketing automation or
critical business decisions such as health scoring.

● Business intelligence (P3) which includes standardized reports and datasets that
we use for company strategic and tactical decisions.

● Every other use case is classified as Others (P4).
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Defining severity based on the use case. P1 is critical. P4 is exploratory

The priority of your data products must be closely linked to expectations for how to deal
with data incidents.

Case study: Get exec buy-in for setting data product priority at fintech scaleup

One pitfall when defining data product priority – especially in larger data teams
with many stakeholders – is that they’ll have widely different opinions on what’s
important. You should establish a set of boundaries for how these are defined. After
all, not everything can be P1. We recommend working with senior stakeholders to
agree on what the priority is and get their buy-in.

The Danish fintech Lunar established a data governance framework with exec
buy-in to define critical data elements across the company. “Every three months,
we meet with the chief risk officer, chief technology officer, and bank CEO to
update them on the latest developments, risks, and opportunities. This helps
everyone contribute to and have a stake in our data quality“ - Bjørn, Data Manager

Establishing SLAs for your data products
An SLA (Service Level Agreement) is a contract that defines the expected service level
between a provider and consumer, including remedies if expectations aren't met. For
example, a P1 SLA for a critical customer-facing dashboard might guarantee 99.9%
uptime. If the dashboard is stale or has other data quality issues, the response time is 30
minutes with a two-hour resolution. In contrast, a less critical P3 dashboard may have
95% uptime and slower response times, like 48 hours for resolution.
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We don’t recommend measuring the entire system with metrics such as model test
coverage, as these can give a false sense of security and lead your team to optimize
toward the wrong goals.

“Measuring data product SLAs directly ties to the experience
your data consumers have and is therefore a much better metric
for the quality of your team’s output.”

Measuring data product SLAs
We recommend that you consider two metrics to get the most complete picture.

● Coverage – what % of assets have the required data controls in place

● Quality score/SLA – what % of controls in place are passing successfully

Only by looking at both metrics can you confidently say whether the data product SLA is
meeting the expectations you’ve set. Both metrics should be monitored across the
lineage of the data product to include the status of any upstream dependencies.

Case Study: Data product SLA metrics should include all upstream dependencies

The data team at Lunar reports on data quality KPIs of their most important data
products to the C-level every 3 months. “As a regulated company, we need to be
able to demonstrate to regulators that we have sufficient data controls and an
ability to trace these across all dependencies. This also gives us something
demonstrable we can show to our regulators.” - Bjørn, Data Manager

Coverage–define the data control expectations (coverage) for your data products based
on their priority. This helps align everyone around expectations and the level of
monitoring that’s sufficient. For example, for P1 data products you may agree on
expectations as:

● All sources must have freshness checks – either explicitly or implicitly through
self-learning monitors

● Key metrics must have relevant accuracy checks in place

● Row count must be tested before and after joins are performed

● Key fields must have not_null and uniqueness tests
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Quality score/SLA–the best way to measure the SLA of a data product is to look at all
data controls through the lens of different KPIs, also known as Service Level Indicators
(SLIs). Grouping your SLIs into meaningful areas helps isolate problematic areas and fits
well into the type of tests you can perform in tools like dbt. (1) Accuracy—does the data
reflect real-world facts (2) Completeness—is all required data present and available (3)
Consistency—is the data uniform across systems or sources (4) Uniqueness—are there
no duplicate records in the dataset (5) Timeliness—is the data updated and fresh (6)
Validity—does the data conform to the required formats and business rules.

To measure the SLA of data products you can sum up the performance of the SLIs. SLA is
then calculated as .𝑠𝑢𝑚(𝑒𝑟𝑟𝑜𝑟𝑒𝑑 𝑆𝐿𝐼𝑠) / 𝑠𝑢𝑚(𝑆𝐿𝐼𝑠)

Some data products may have different sensitivity to different SLIs. For example, for an
ML model training set, accurate and complete data may be more important than timely
data. In these cases, you should define separate Service Level Objectives (SLOs) for each
SLI.

A benefit of the approach above is that once you’ve set up adequate data controls,
monitoring, and measurement are fully automated and objective. We recommend that
you also monitor the number of declared incidents by their priority as these give you a
more subjective view into when a data product was impacted by an issue that was
escalated to an incident.

Internally at SYNQ, we rely on automated grouping for all our SLIs. This means that new
data controls are automatically grouped and counted towards the data product SLA and
coverage as they’re added.

Setting expectations for SLA levels and remediation
For a given month, to keep different SLA levels given 1,000 data checks on and upstream
of the data product, this is the level of failures you can tolerate
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● 99.9% reliability: 1 failure, equivalent to 43 minutes of downtime.

● 99.5% reliability: 5 failures, equal to 3.6 hours of downtime.

● 99% reliability: 10 failures, around 7.2 hours of downtime.

● 95% reliability: 50 failures, equivalent to 1.5 days of downtime.

● 90% reliability: 100 failures, up to 3 days of downtime.

Case Study: Shalion contractually commits data product SLAs to external
customers

For Shalion – the eCommerce data solution platform – data is their product. If they
provide unreliable insights to end-users through their customer-facing dashboards,
this directly impacts customer trust and retention. Therefore, the data team’s next
step is to contractually commit to SLAs around the accuracy and correctness of
their data products and thoroughly measure the time it takes to detect and notify
impacted stakeholders of issues.

In the ideal world, you would be able to guarantee 99.9% SLA of all your P1 data products.
In reality, this may be a steep goal to reach. In some cases, the SLA may be something
you commit to contractually such as the uptime of a customer-facing dashboard. But in
most cases, it will serve as a guideline, and help align data consumers and producers
around a common goal.

You should align your incident management processes closely to the priority and SLA of
your data products. A 24-hour response time on a P2 data product with a 90% SLA may
be OK. But you may need to jump on issues on P1 data products much faster than that.
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CHAPTER 3

Proactive 
Testing & 
Monitoring
We build a testing and monitoring 
framework that that maximises 
errors caught and minimises alerts.



Before we talk about building a robust testing strategy, it is worth discussing some
common approaches to testing and monitoring that are widely adopted across the
industry but not optimal.

Anti-patterns

Redundant testing
Data platforms are composed of data assets — tables, metrics, dashboards and more —
created by transformation tools like dbt models, Spark jobs or ingest pipelines.

A simple mental model I frequently use is to see data platforms as a network of data
assets, interconnected by transformations that build them on top of each other. Data
flows through the network from source systems through layers of transformations into its
final use case, whether a dashboard, data export, or machine learning model.

To ensure these complex chains of transformations work, data practitioners are
increasingly applying various testing techniques such as data tests, anomaly monitors,
data contracts or unit tests. Especially built-in tests in transformations frameworks such
as unique, not_null, accepted_values, or relationship tests are the most
popular.

To encourage adoption of testing many teams set test coverage targets and generally
encourage teams to write tests for every model. But while the intention might be good,
this ‘test every model’ approach to testing might not yield the best results.

The model-centric approach does not consider the wider context, which almost always
leads to redundancies. Tests are applied in a sequence, following the DAG of
transformations, often without any chance for this data to go wrong as it moves between
the models. This doesn’t just lead to unnecessary computing costs. More severely, it
creates a false sense of safety.

Example: Redundant basic dbt tests

We’ve built a model called stg_latest_issues that pulls data from a
stg_issues model. It has relatively simple code:

select
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id,

workspace,

...

from

{{ ref('stg_issues') }}

order by

ingested_at

limit

1 by id

The upstream table contains one record for every modification of a given issue, and
the model pulls the latest record for each issue by id, which is the system’s unique
identifier for the problem.

One possible issue with such data is that an id will be empty, suggesting that we
are working with a corrupted issue record. It is also why the upstream table
stg_issues verifies that such a situation can’t happen with the following test:

select * from {{ ref('stg_issues') }} where id = ''

If this test returns any records, it will fail.

But what happens when we pull data to the downstream model
stg_latest_issues? Do we test for empty id again? How could this id possibly
become empty? The short answer is that it can’t.

The above example is a very simplified case of a problem that can lead to significant
redundancies in testing.
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“Mechanically re-applied tests without awareness of the broader
data pipeline do not add more safety to our data.”

Disconnected tools
As data systems evolve, so does the data quality tooling. Today, it’s common to see
teams using combination of tools for data quality: dbt for testing, a separate platform to
execute anomaly monitoring, and another system to monitor overall ETL pipelines that
coordinate their execution.

Teams involved in analytics across Data Engineering, Analytics Engineering, Data
Science, Data Analytics also have different needs. While data engineers are
predominantly focused on executing pipelines and want to ensure that all necessary jobs
work correctly, analytics engineers or data analysts are more concerned about the
content of the data itself, deploying data tests and anomaly monitoring. On top of this,
governance teams have their expectations to understand the strategic evolution of data
quality, for which they frequently profile the data and measure its quality on several
governance dimensions.

It leads to fragmentation.

Example: Freshness monitoring on tables goes wild

A practical example is a setup with a dbt project with hundreds of tables
complemented by a sub-optimally configured anomaly monitoring tool. dbt
executes in hourly jobs, so the entire DAG refreshes once per hour under normal
system operations.

On the side, the team has deployed an anomaly monitoring system, and one of its
rules is monitoring for freshness, e.g., detecting if the data gets abnormally delayed.
These types of monitors are now table stakes in many monitoring tools, and
therefore, they will quickly learn a correct pattern of data refreshing every hour.

One day, this pipeline breaks at 2 am. One dbt model didn’t execute correctly due
to a timeout issue with the underlying data platform. It causes the entire DAG to
fail, with one failed model and hundreds of others skipped.

Thanks to a well-organized dbt alert, the right team gets notified about the failure
with the proper context of what failed and the fact that the entire downstream
pipeline is affected.

But what about the freshness monitors? Every monitor for every skipped model
reports an issue just an hour later. The team is hit with unactionable alerts, which
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add little value to their issue resolution. dbt job failure has already provided all the
context of what models have been skipped.

A more cohesive and strategic approach to testing could have avoided the unpleasant
experience of hundreds of unnecessary alerts.

For example:

“If we correctly monitor our dbt jobs, why do we want to deploy
any freshness anomaly monitors on any tables created by models
in these dbt pipelines?”

There should be no scenario in which we wouldn’t know about a failure deterministically
by monitoring the jobs. In above scenario an anomal monitor that behaves
probabilistically introduces a potential risk of false alerts and at best, it will learn to
predict delays in our scheduler, which we already know and control.

‘Test/monitor all’
Data ecosystems are becoming increasingly complicated, and testing approaches
recommending testing or anomaly monitoring every table need more context of critical
use cases. One example is hundreds of freshness tests deployed where they add no
value.

One standard industry advice is monitoring a wide range of tables (or all) for table-level
anomaly patterns. One possible reason for this advice is that such monitors have become
relatively easy to execute at scale. But such a setup is often noisy. Data anomalies tend to
cascade across data stacks. So, an anomaly detected in one table could trigger dozens of
other tables to report abnormal data patterns without much additional value.

The same applies to testing. If we attempt to test everything, we will likely receive a
proportionally higher number of alerts, but we might need more incentive or urgency to
fix them.

Therefore, the desire to have a wholly tested data stack, whether with anomaly
monitoring or data testing, is academic. It sounds like a good thing to do in theory. Still,
today’s data systems practically contain a mixture of use cases, and data flows with
different risks and expectations of reliability.
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Focus on models
Today’s prevalent approach to testing in the industry is focused on models, which is why
we see advice such as ‘every model should be tested.’ We also see teams setting targets,
such as test coverage, to incentivize teams to make measurable progress towards such
goals. While such advice takes some inspiration from software engineering, it lacks
nuance. Most of the software engineering code in systems we take inspiration from is in
production. If such systems fail, they cause an immediate and direct impact on
customers, so their reliability is paramount. But that is not the only type of code software
engineers write.

In some cases, engineers write one-off scripts to execute a finite task. Such code will not
become part of the production system and, in some ways, becomes obsolete once the
task is done. However, for posterity, scripts are frequently checked in a source code
repository and live alongside the production codebase. Still, engineers typically apply
much more rigorous testing on code that will have to run in production than ad-hoc
code.

This distinction is even more critical in analytics data platforms.

Today’s analytics systems don’t clearly distinguish between production and scripting. In
software engineering, the software is typically composed of reusable modules and
libraries that can be freely reused in scripts, often executed on an engineer’s local
computer. Data teams have to deal with many more constraints. Their systems run on
cloud data platforms and must process vast amounts of data to perform experiments.
They often have no option but to include their work in the rest of the data in their
production data platforms.

“This forces data teams to experiment in a way that is much
more integrated with their other, often critical data. In other
words, the experimental code is mixed in a DAG of models
created on each other.”

Case Study: Life-cycle of a reverse ETL

You are an analytics engineer at a mid-sized organization with 500 dbt models.
Since your organization has invested in data for a while, many of these models feed
into various dashboards and other data applications. Some of these data outputs
are very important to your company. One of them is a reverse ETL that feeds data
back into Salesforce, which helps your commercial team colleagues prioritize
which accounts they reach out to tomorrow. Another essential use case is in
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marketing. Your demand gen team uses customer CLTV data to feed look-alike
models in advertising platforms. These use cases are critical.

You’ve been asked to develop a new version of customer scoring. The analysts
created a solid hypothesis on how new scoring can work and validated with
stakeholders that new metrics are indeed meaningful and would be valuable to the
commercial teams, but it needs some work; they only wrangled data in dozens of
spreadsheets, but it’s fragile and can’t be used as is. That is why you come in to
make it more robust. You will need to bring several new data sources into the data
stack and write a series of models that process them. This will take at least a week
and collaboration with data engineers.

In such a scenario, it’s natural and expected that all this code starts incrementally
landing into the dbt project, layer by layer. From this point, it may take weeks
before this new pipeline matures enough to replace the current production system.

One day, you get a ping from your colleague on a weekly rota to triage incoming
data errors, and some of your models are timing out. The other day, one of the data
sources didn’t refresh. The first problem was a mistake when excessive data arrived
at the warehouse, which caused problems. In other words, the pipeline skipped one
crucial task, and retry didn’t work. You knew this could happen as data eng. The
team is also working on the new pipelines. It’s not a big deal; it’s a work in progress.
All this will be solved before the system gets to production, and the team is well
aware.

And this is just your project. A dozen others are being developed in parallel.

It’s essential to understand this dynamic.

“It’s not uncommon for data platforms to feed into dozens or
hundreds of final use cases that need to be operated with vastly
different reliability guarantees.”

In some cases, the specific use case is a work in progress. In others, it’s an experimental
dashboard one of the product analysts put together for their team. In another case, it’s a
daily pulse one of the teams in operations sets as a reminder of something nice to know.
In contrast, you might have use cases such as an automated marketing pipeline deciding
how to allocate hundreds of thousands of dollars monthly. All these use cases are
intertwined.
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The result: Alert overload
Combine all above and we’ve built a solid recipe for alert overload. Many teams are
drowning in large volume of hard-to-action, unclear, or unimportant alerts.

This nicely highlights the challenge: We need a better, more strategic, approach. The
best approach to testing will work with several key, to a degree contradicting forces:

● Minimize the number of alerts received to prevent alert fatigue.

● We must minimize the number of tests and monitors we create and execute to
reduce overall complexity, cost, and alert fatigue.

● Maximize the chance of detecting issues.

Testing software well is an art and skill that software engineers spend years mastering.
Data teams are no different. However, the benefits are clear: well-done testing means
more reliable systems and more robust data.

There are several vital considerations to make.

Designing a Testing Strategy

Testing pipelines, not models
The above example could help us inspire an alternative way of looking at our data
platform. Instead of seeing it as a network of interconnected models with dozens of
outputs, we can start from the end use cases and data products and expand them into
pipelines.

A data product pipeline is a direct acyclic graph of its upstream dependencies, including
all models, tables, and pipelines that move data from its source into the product.

Consequently, the pipeline can be seen as an end-to-end horizontal slice through the
entire data platform, traversing all system layers. This approach brings several benefits,
especially if we’ve done diligent work on the definition of data products and their
severity:

● Severity can back-propagate. By definition, the pipeline of models feeding into
the P1 critical data product has to be treated to the same degree. Otherwise, we
will create misaligned incentives. The downstream team is held up to a P1 priority
while someone else upstream is not; that doesn’t work. Severity back-propagates.

● More apparent impact assessment: Failures identified within the data product
pipeline can be directly linked to the product. This can significantly improve
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communication across teams, as the pipeline will be expected to run through data
assets owned by different teams.

● Feedback on architecture. Since the content of the pipeline carries the severity of
the end use case, we could use pipelines to understand how much use cases are
tangled across different priorities (P1 to Pn). More intersections between them
mean we increase the chance of work on the P4 pipeline, possibly unintentionally
impacting the P1 system.

Another way to look at the centric approach is that besides various technical and
workflow benefits, identifying the pipelines, especially the ones feeding into critical data
use cases, gives us a lot of focus. As a result, we can evolve our approach to testing,
focusing our energy and effort on pipelines that feed highly critical products.

—

However, despite the above benefits, the data pipeline-centric approach is rare in the
analytics community. At SYNQ, we believe this is mainly because we don’t have the
proper tools to work that way. To establish this new approach, we need to solve the
following:

1. Anchor data product definition into observability and catalogs and use underlying
metadata, particularly lineage, to identify up-to-date dependency chains leading
to the data products.

2. Create pipeline automation workflows. Once we identify the pipeline, we need
better systems to govern it. We should be able to deploy monitoring and focus
our testing on specific pipeline(s), as well as create workflows that help us
improve the architecture of our system, making it easier to maintain large
numbers of such pipelines in a single data ecosystem.

3. Establish data product pipeline oversight. Instead of looking at entire systems
with metrics such as model test coverage, we will need to reason about pipelines
by understanding failure rates, SLAs, issues, and incidents by pipelines.

Case Study: Establishing P1 Data Product pipeline for SYNQ user-facing analytics.

At SYNQ, we operate a data platform with hundreds of tables and models and face
similar challenges as most data teams: our data platform, ClickHouse, feeds a broad
mixture of data use cases, from P1 user-facing systems to exploratory analysis of feature
adoption in our product (P4).

Our latest pipeline was for user-facing analytics that we expose to customers to help
them understand quality metrics such as the percentage of failed tests, time to
resolution, and the number of issues they can analyze by data products or teams.
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As a consequence of being customer-facing, this pipeline is P1, e.g., its highest
importance, and we treat it as any other production system that is powering our
user-facing product.

The end product is a React.js application that interactively exposes data to our
customers. Under the hood, it queries multiple ClickHouse Parameterised Views that act
as an interface to the FE system. This view leverages data from 4 different source
systems (SYNQ micro-services) to calculate the final metrics.

To create clarity, we have defined final views as a data product that anchored this use
case into our observability approach.

With the following definition, we’ve used lineage to identify the pipeline.

Understanding our pipeline would allow us to start reasoning about our testing in a
particular way—ensuring that data that arrives into final views is robust and reliable, with
little room for error.

Testing Layers
With an approach to testing anchored around data pipelines, we’ve created a lot more
clarity and focus on specific models that we want to test to an elevated degree since
they feed the P1 product. This is beneficial for the particular pipeline, but without
additional concepts, it could be dangerous in the long term.

As we discussed earlier, it’s widespread and reasonable to expect data product pipelines
to be interconnected. However, developing a unique and specific strategy for every
pipeline could also be complex and infeasible.

This is why we think about testing in layers.

Data platform layers are a standard mechanism for tackling their complexity. We often
hear about raw, staging, mart layers, or medallion architectures with bronze/silver/gold
layers.

“For data architecture and modeling, the data platform layers
help us decide what kind of transformations to apply where.
Testing is the same; we want a testing strategy outlining what
type of testing to use at every data platform layer.”

We do so with several objectives:
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● Alignment around what to expect. Layers literally’ slice’ the big testing problem
into smaller parts, making it easier to reason about what kind of testing we can
expect on data assets.

● We are setting a common standard. We classify the decisions by strategy,
removing some from everyday work. By deciding what to test at each layer, we
align the team.

● We are removing redundancies. Retesting for the same context, like retesting that
customer_id is not_null in every single model across layers of the transformation,
doesn’t bring more reliability, generates more cost, and possibly contributes to
alert fatigue. We want to eliminate redundancies.

The golden rule to strive for (the same as we do when testing in software engineering) is
as follows:

“For any potential failure mode of our data, we want the
minimum, ideally one, test or monitor to fail.”

Let’s say we have five customer records with customer_id NULL. This is unexpected. But
if more than one test fails, it’s a code smell. It contributes to clutter in alerting, adds more
code to maintain, and reduces clarity. One test should have failed.

Defining the testing layers

Testing layers should be tightly coupled with architecture. In another way, design testing
into layers that fit your architecture design.

At SYNQ, on the highest level, we slice our data platform into the following layers:

1. Pipelines start with the data source (operational system) and end when data
enters the analytical system. This is where you transform the data, typically in the
first layer of tables in the data warehouse. Pipelines often contain ETL pipelines,
raw data lakes, or streaming systems.

2. Sources are the first layer of data that enters the data warehouse. The source is
typically the first layer of data where we can apply transformations in SQL and
implement tests from dbt or similar analytics engineering tooling.

3. Transformations are layers of data transformations where we clean up the data,
model key business concepts, and create data assets ready for analytics use
cases, typically our core data models.

4. Marts is the last layer of data, where data leaves the platform into a given use
case(s).
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The above model is generic and should apply well to most of today’s typical data
platforms.

The Strategic Approach

We’ve finally set enough foundations to move on to the meaty part of the testing and
monitoring strategy design: Deciding what types of tests to apply and where.

We will work with the following fundamental principles:

1. Tests and monitors are designed to complement each other. We decide what
failure modes we test within each layer of our data platform and pipelines.

2. We minimize redundancy. We avoid putting similar or identical tests into a
sequence of models in the DAG to ensure that only one test fails on failure.

3. We combine data testing and anomaly monitors into a cohesive testing strategy
that avoids duplication.

Testing Sources

Let’s start with the definition.

What do we mean by a source?

The source layer of a data platform is a collection of data assets ingested from
third-party systems like CRM, ERP, company products, or other non-data teams like
engineers and business operations within or outside the company.

“In other words, it’s the layer of data that is under the control of
the data team for the first time.”

In many organizations, this is directly linked to a concept of dbt sources, as we frequently
load data into data platforms from ingest pipelines or cold storage systems, which are
primarily not used for analysis to start the modeling activities inside of dbt.

While this definition is practical and applicable to most data teams, some teams have
additional pre-processing steps before dbt, and therefore, their data sources are more
upstream.

A practical guideline to decide what our sources are would be as follows:
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“Find a layer of data as close as possible to the source, where
you can control the data and add monitoring and tests without
dependency on other teams.”

dbt sources or the first layers of models in dbt perfectly fit this definition. But so would an
upstream platform with well-established testing tooling such as great_expectations.

Why invest in testing sources?

The above definition of data sources as the upstream layer in the data team’s control has
a reason. A source layer of data that fits this definition essentially becomes an interface.

It is an interface with many exciting properties, which are very helpful for testing:

1. It separates systems built predominantly by the data team from other systems.
Everything downstream of sources is data models and other analytical assets.
Most of the business happens upstream.

2. Detecting issues at source means detecting issues from upstream. Since we test
data that arrives at the data platform as upstream as possible, we are not testing
any login within the models. We are testing assumptions about the input data to
the analytics system, which means we are testing the consistency of data that
arrives from the source.

3. It aligns well with ownership—downstream from the source, data analytics teams
own it, while upstream is owned by data engineering and operations and
engineering teams across the business. Well-tested sources could be a great
mechanism to engage the upstream team in data quality.

Sources are input we must work with throughout the rest of the pipeline. They are the
most upstream assets within data analytics modeling, and so failure to detect errors at
this layer often has broad and severe consequences.

“Testing sources is a high-leverage activity. We are verifying the
quality of data that feeds into every other model in our system,
which has the most significant number of downstream
dependencies and attributable usage.”

This definition is also a reason for the following advice, which we apply internally at SYNQ
but also advice to our customers:
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“When in doubt about where to start with testing, start with
sources.”

We will combine this advice with our shifted focus on testing pipelines to create a
practical prioritization framework for quality improvements.

What does a well-tested source look like?

Previously, we’ve demystified a common technique: put unique and not_null tests on the
primary key and consider the source (or model) well-tested. Such a strategy promotes a
setup where most data flows through the system untested, creating a false sense of
security.

This is particularly important at the source.

One critical decision we will make is what kind of tests we want to apply at the source. To
some degree, this is generic, but you should always consider your context critically,
especially from the risk perspective: What is the risk of not detecting an issue at the
source?

We follow with a list of typical data issues we want to prevent at the source, outline what
types of tests are most applicable, and provide a rationale for why and how we should set
them up.

Testing structure

data comes from the business in many shapes and forms, and given that the business
tends to evolve, and so does the data structure, it is essential to verify that the critical
expectations we rely on are met.

When reasoning about how deep to go, especially when the criticality of the use cases
for the data being brought to the data platform is not fully known, it’s worth being
defensive and testing sources well so they can support use cases with the highest
criticality.

“Another way to assess the depth of testing sources is to look at
the data source from the business perspective”

How central is this data to our business?

I’ll give a few examples that bring this advice to life:

● In fintech, data sources that represent transactions
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● In e-commerce or logistics, data sources that represent orders or shipments

● In SaaS or infrastructure, the data that represents usage and engagement

● In Marketplaces, the data that represents demand and supply

These sources will likely be central to the respective data platforms. Of course, this is a
small example to illustrate the principle. Think about how key every source is to your
business domain, which will likely correlate with the criticality of use cases built on top of
it.

With that in mind, let’s dive into the testing itself. For well-tested sources, we, in general,
want to have the following in place:

● Data is present and complete. We are mainly focused on detecting not_null and
empty values. This can be well done with dbt and similar frameworks, as these
tests are readily available and widely used.

● Ensuring uniqueness—duplicate data is one of the most common ways data can
go wrong. Applying unique tests from dbt is a way to prevent issues. Besides the
built-in unique dbt test, there are also several extensions, such as
unique_combination_of_columns or even conditional unique tests, that could test
for more nuanced business scenarios around unique data.

● Testing values—for low cardinality fields, it’s worth verifying the expected (or
blocked) values to catch deviations early. We tend to recommend an approach
with explicit enumeration (list of accepted_values which comes with dbt Core)
because the data team gets explicitly notified about new values, which often have
to be handled in downstream models as otherwise they might get rolled up into
‘other’ logic branches or even completely unhandled, causing issues.

● Testing format of values—For fields with higher cardinality where it’s infeasible to
enumerate the values explicitly, it’s worth thinking about testing the format of the
values in another form. For numeric values, this could be done via min/max logic;
for test values, this could be a regular expression for the expected format (like
birthdate or email). These tests are beneficial in detecting corrupted records at
scale early.

● Monitoring ingests of data—one of the most common sources of issues in
analytics systems is the broken flow of data, typically as an unintentional
side-effect of change upstream. Multiple layers of ensuring that consistent data
flow happens are worth breaking down further:

● Freshness testing is an excellent tool for scenarios where we want to ensure
complex SLAs regarding the timeliness of the data. For data sources that we now
have to be refreshed at least every period, a deterministic freshness test (like the
dbt source freshness test) is the right tool.
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● Freshness monitoring—in comparison, many data sources are not as specific in
their update frequencies. Further, setting up hard thresholds on hundreds or
thousands of sources is impractical. Freshness anomaly monitoring is a viable
alternative, as the threshold can be learned from historical data patterns. This
approach is superior in case freshness has seasonality or pattern that is hard to
express in simple freshness tests, like scenarios when the data pipeline gets quiet
every night or every weekend. Freshness tests would either alert too frequently
(and cause alert fatigue) or have to accept considerable delays to account for the
most extended gaps of inactivity. These criteria could be used to decide if a test
or monitor is a better solution.

● Volume monitoring—ensuring a solid volume of data is even more firmly in the
anomaly monitoring domain. Maintaining expected thresholds of increments of
data is very impractical and tedious. Especially given typical evolution of business,
which grows and changes, data volumes tend to fluctuate much more than the
frequency of loads (freshness). Therefore, anomaly monitoring that can further
model seasonalities is a more feasible option.

● Monitoring deeper—the final consideration is whether tracking data on the table
level is sufficient or if deeper monitoring is required. Consider a scenario where
the data source in the platform is a fan-in pattern of many underlying data
sources—like hundreds of events tracked from a website. A single event missing
would most likely be unnoticed by all other solutions — tests, volume, or freshness
monitors set up at table level will not be able to pick up nuanced changes where
perhaps less than 0,1% of data stops flowing. Yet this could still be 100% of typical
data for a specific website traffic event that broke due to a faulty website update.
In critical data sources, deeper monitoring that works on segments of data
(volume monitoring per event) is a great tool.

Does this sound like a lot? It’s indeed more than ‘one test per model,’ but this is what it
takes to test sources well. I’ve previously mentioned that mechanical testing is
problematic as we are not intentionally designing test suites. But I’d like to nuance it from
this point.

By defining a testing strategy for sources like the one above, we have applied strategic
nuance—we’ve intentionally decided how we will test sources, deciding what tests we
use (and what tests don’t). But with a chosen strategy, we can roll out the above setup at
scale, to a degree with automation, making the daunting task of writing all these tests
much more approachable.

The role of data contracts

At this point, it’s worth reflecting on the relationship of source testing with another
concept: data contracts.
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“A data contract is a document that defines the structure, format,
semantics, quality, and terms of use for exchanging data between
a data provider and its consumers. It is like an API but for data.
—https://datacontract.com/”

This definition is essential as it clarifies that well-tested sources and data contract
definitions are complementary techniques. Data sources are very reliant on source
testing. This is because data contract specification and tooling focus on an explicit
definition of data contracts, including the definition of quality—which might include a
definition of data testing—but data contracts themselves are a description. They don’t
enforce the quality itself.

With that in mind, teams that already use data contracts should integrate testing data
sources and implementing data contracts into a single workstream. A data contract can
act as a prescription for what should be tested while tooling such as dbt or SYNQ can act
as an execution environment where these tests get provisioned, executed, and tracked.

Testing Transformations

It’s precisely because we are still applying a pipeline-centric approach to testing that the
volume of tests we will be adding going forward will start to decrease. In other words,
we’ve done a lot of testing at source, which we don’t have to repeat.

“With a well-established testing strategy for sources,
transformations can have much lighter testing suites, where we
focus only on what has changed.”

This fundamentally differs from model-centric testing, where we look at each model in
isolation. Instead, going forward, we consider the tests we’ve already established
upstream (at source) and fill the gaps.

Several key types of transformations are essential to test because they tend to be prone
to errors:

1. Data cleaning and normalization—is often simple logic that is easy to test

2. New combined/derived columns—when new columns are created due to SQL
logic that transforms or combines multiple other columns, it’s a new business
logic. This could be anything from simple transformations, such as recoding
numerical codes into more user-friendly values, to complex CASE / WHEN
statements that could introduce a big chunk of business logic.
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3. Table joins—which are a persistent source of errors caused by duplicate joining
variables.

4. Data aggregation—where we create new groups of data typically by using GROUP
BY clauses or analytical functions

5. Data Structuring and Reshaping—where data structure in the table is
fundamentally regrouped, typically using groups by clauses or, in some cases,
more advanced concepts like pivots.

Given each model in our ecosystem could be a different combination of the above, it
could be helpful to define testing techniques for each type of concept, which can then be
combined into a final testing suite for the given model.

Data Cleaning and Normalization

Cleaning and normalization are often very lightweight data transformations; therefore,
testing them could be equally lightweight.

Cleaning and normalization code is also very frequently a source of redundancy. It’s
because lightweight transformations are very unlikely (or in some cases impossibly) a
source of data errors.

Think about simple changes such as normalizing column names:

select

id as issue_id,

workspace as tenant,

toDateTime(created_at) as started_date

...

from

{{ source('incidents', 'issues') }}

order by

We could retest issue_id and tenant or started_date, but such tests could be
redundant to the testing we have already done at the source.

Such examples can be tests we’ve done to verify that the upstream id is not null or
unique, that the workspace is always there and has correct reference to the workspaces
table, and that created_at exists; all these tests significantly contribute to the reliability of
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this downstream model, too. For example, the upstream id uniqueness test guarantees
that issue_id will be unique, too.

Eliminating such redundant tests has several key benefits:

● It is easier to reason about—we have a more unified place for each type of test

● It’s less likely to generate redundant alerting—especially if you don’t run a dbt
build or these tests have WARN-level severity. Otherwise, you would get more
failed test results than you need.

● It’s less compute—each test is an additional query to your data, and therefore,
eliminating redundant tests also eliminates redundant traffic.

Case Study: Removing redundant uniqueness tests to save 10% of warehouse cost

At the start of 2024, we engaged with a customer looking for ways to save costs
on their data platform. They have done an excellent job with models, switching
many to incremental materialization or optimizing their underlying SQL structure,
but they forgot about testing.

After a quick analysis, we identified a sequence of 3 tables in their DAG, each
testing for the uniqueness of the primary key (id) on a large table. The test was
verifying the uniqueness of more than a billion records hourly and to make matters
worse. These tests were not just slow on their own but also redundant; just one test
would create enough safety. By removing redundant downstream tests and
changing their frequency, we reduced data warehouse computing cost by 10% in a
single commit, saving tens of thousands of dollars per year.

Newly derived columns

Newly derived columns could be looked at through a simple conceptual lens.

“A model that creates derived columns is their source; therefore,
we can apply a playbook from testing data at the source to test
derived columns.”

In other words, derived columns are worth testing deeply, proportional to the complexity
of the logic applied to create them. We use various typical data testing methods, such as
uniqueness, non-null, accepted values, etc. We should always remember the logic and
consider where it can break.
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For example, consider the following logic:

CASE

WHEN … THEN ‘active’

WHEN … THEN ‘pending’

ELSE 'inactive'

END AS status

Testing such a column for not_null values in many scenarios doesn’t make sense as we
implicitly ensure some by the ELSE clause.

Derived columns often contain much more complex logic, which could combine data
from many columns that might come on top of join across multiple tables. In such
scenarios, bringing a technique we haven’t discussed might be beneficial: unit testing.

“Unit testing differs from data testing as it creates a complete
testing cycle, from seeding the correct data to executing the
logic and asserting the output.”

This makes it a great tool of choice when testing multiple scenarios where we
seed/test/assert different setups. Doing such testing on transformations that
power-derived columns could be an efficient and not-so-complex way to introduce unit
tests to your quality strategy.

But keep one crucial thing in mind.

“The maintenance cost of unit tests is higher than the
maintenance cost of data testing.”

When we decide to change the SQL logic, we must update unit test expectations for all
scenarios. It’s a natural trade-off: the more diligent reliability guarantees we get, the
more work we must do to maintain the tests.

It’s essential to balance robust test coverage and ease of maintenance. Every unit test
should have its purpose and be typically introduced in scenarios when more
straightforward data tests are insufficient.
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Joins

Joins are notoriously error-prone, typically due to unexpected duplicates in any of the
joining variables.

The scenario is simple: we join two tables on a variable that is — unexpectedly — not
unique. As a result, we duplicate rows. This problem is called ‘fanout’.

It’s why testing models with joins is particularly important, especially with the right types
of tests that specifically aim to detect the ‘fanout’ problem.

At SYNQ we frequently use one of the following strategies.

Row count validation

In cases where we’re joining data without aggregating or filters, we can apply the row
count check.

Consider the following scenario

select

issues.id as issue_id,

incidents.incident_id as incident_id,

...

from

issues

left join incidents on issues.incident_id = incidents.id

The issues table is a base table of the join. In our domain, one issue can be part of no or
one incident. This means that under no circumstance we should join multiple items. But it
would be naive to assume that this important business assumption is always met. This is
why we need a test.

Given we’ve constructed our join mainly to enrich issues with additional data from
incidents without additional logic we can write a simple check. Number of rows in our
new table should match number of records in issues table. In other words we verify that
no additional rows were created.

One of the benefits of the row count test is that we can execute it as comparison of
select count(*) from orders and select count(*) from

orders_with_incidents. Executing such query is typically cheap, as data platform

35



can use underlying metadata potentially without scanning any data from the underlying
storage.

Verify cardinality of join keys

Alternative approach is to verify cardinality of columns involved in the join. As we
discussed, the assumption is that an issue can only be part of one incident. This could be
direclty verified by one of the tests in dbt_utils:

# models/issues.yml

version: 2

models:

- name: issues

tests:

- dbt_utils.cardinality_equality:

compare_model: ref('incidents')

compare_column: id

column: incident_id

This test will fail if the number of distinct values in incident_id is different from the
number of distinct values in id in incidents table.

The above test has a potential to be even more accurate way to prevent the fanout
problem, but it has a caveat. Compared with row count test it has a lot more complex
SQL logic. This might not be a problem for small models, but it might be a challenge if
you’re dealing with large number of rows.

Aggregations

Aggregations are another essetial building block of data products. Whether it’s a simple
count of rows or a complex aggregation, aggregations typically combine data from
multiple rows into more meaningful measures.

Data models with aggregation logic have a number of interesting testing challenges:

● Aggregations change the number of rows in the table, typically aligned with
granularity of grouping.

● Aggregations create new columns that represent aggregated measures.
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● Advanced concepts such as window functions can introduce very complex and
hard to test logic.

This means that correctly verifying aggregations might be a complex task, which we can
approach with number of techniques.

Testing Products

The final layer is frequently called data mart which describes a set of datasets that are
purposely assembled for a given set of use cases. The exact structure varies from
company to company. In some cases marts align around functions such as marketing,
sales, product. In other cases marts align around purpose of data like fraud analytics,
customer health, etc.

Whatever organisation you choose the marts should have one thing in common — they
should contain data products that are ready to be consumed from processes in the
business. This also means that we ensure that they work reliably, with testing.

To test data products, we can shift the approach again. Since we’ve done the work of
methodologically working through the layers of the system and tested reconciliation with
operations, sources and transformations well we no longer need to test the basics.

“Instead of focusing on technical aspects of data, when testing
data products, we verify the logic encoded in SQL
transformations.”

Beyond unit testing — Integration testing in Engineering

Testing software well is always a challenge. This is no different in data and other
software systems. This is also why over time the software industry developed a
whole range of testing techniques — unit testing, integration testing, contract
testing, behavioral testing, end-to-end testing, smoke testing etc.

In software, unit testing is very valuable tool that complements the development
process. We build functionality with unit tests in small increments and continue
enhancing our tests as we build our software. The flow goes like this:

1. Write a test that defines input and output of a new unit of software
2. Implement the functionality, ensuring that the tests pass
3. Repeat
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If you follow this process rigorously, its called TDD (test-driven development). I
personally don’t think its worth following religiously. Sometimes its better to code
first, sometimes its better to start with a test. The important bit is that we consider
writing tests an integral part of building software.

But unit testing has its limits.

Most software consists of large number of units (functions / modules / services). It
has many inputs and outputs which interact in non trivial ways. To test all units in
isolatation is only possible if we mock inputs of each tested unit. This is often
impractical and potentially very fragile. It’s because mocked interfaces that drive
our tests tend to change and mock that mimics changed interface is a faulty
interface. Our tests might continue to confirm our software units work as expected,
but the system as a whole doesn’t work correctly anymore. Once units are
deployed to production together, the system fails, at the interface.

This is also why software engineers use whole range of other testing techniques
beyond unit tests. One such testing technique is called integration testing.

In integration tests we don’t focus on granular units of software, but as the name
hints, we focus on testing the units together, integrated. The integration test is
therefore intended to verify large pieces of software together. In some cases it
could be large modules with many units, in other cases we can integration test
functionality of the entire system altogether.

Integration tests of course also have their downsides. They are often slower and
more complex to setup, as they test larger system components, which might
involve setup of databases and other heavy software components.

The key is to combine unit and integration tests well. They both have their function
in the testing strategy and work the best together.

While integration testing is not really formalised and widely adopted in data platforms
and SQL systems, we can take the inspiration from this approach and apply it in our data
product tests.
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“Since final data products are directly linked to a specific use
case, we can verify the accuracy of our data system by
mimicking queries specific to the use case.”

In other words, we run real-world queries and assert that response we got is correct. This
type of testing could be seen close to integration testing. We are not mimicking any
interfaces, we are querying data from the final layer of transformation, which will be only
correct if all upstream models function correctly too.

Regression and business logic tests

Beyond generic tests dbt ships with so-called singular tests. Singular test is simply a SQL
query that should isolate faulty data.

In the context of our incident management system that produces information about
mean time of resolution of issues we could write integration test that verifies that under
no circumstances our system can return time to resolution of any issue that is negative.

Conceptually it could be as simple as:

select * from incidents where time_to_resolution < 0

Another key metric we produce in our final data product is measurement of percentage
of failed tests. For example if for any reason our logic would count more failing tests than

want to know about it.

select

workspace,

toStartOfDay(created_at) as day,

pct_test_failure

from incidents

where pct_test_failure < 0 or pct_test_failure > 100

group by workspace, day
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We’ve created this test after identifying logical issue with some of our calculations, which
under some circumstances would return invalid failure rate. We’ve for example counted
that 10 out of 7 tests have failed, which is clearly not possible.

Tests like above are very useful to catch such logical issues that can appear anywhere in
the data system. The test the system from outside-in. In some way, mimicking the
queries that are actually run in the business.

As outlined another good use of these tests is to verify regressions.

“In software engineering, when issue is reported the engineers
often spend considerable time to replicate the issue. This means
thay can replay the faulty scenario and write a test that will fail.
This could be done with these data product tests too. This
approach would act as final confirmation that the issue is fixed
and as a regression guard.”

Testing historical consistency
Almost all analytical systems provide information about history. Whether it is historical
revenue, product usage or customer acquisition, we often analyse data over periods of
time.

This attribute of analytics system could be leveraged for testing.

Suppose our analytics system has measured 10,000 resolved incidents. The resolved
status is actually an attribute of incident that logically combines multiple fects. We could
test that the number of resolved incidents is consistent over time by comparing live data
from our system querying historical period with a historical snapshot.

“We could verify our business logic by testing historical
consistency by comparing live data from our system querying
historical period with a historical snapshot.”
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The test would be as simple as:



concat('Expected 10000 resolved incidents but found ',
toString(countIf(status = 'resolved'))) as error_message

from

incidents

where

year = 2024 and

workspace = 'acme'

having

countIf(status = 'resolved') != 10000

If the historical consistency of this data is not correct, we would want to know about it.

Note: Tests for historical consistency need to be used with caution. They are excellent for
catching issues that would unintentionally change historical data, but are also expensive
to maintain in case when calculations are actually changing. In such case its difficult to
find and verify the new correct asserted value.

Summary
In this final section we’ve covered how to test data products. We’ve taken inspiration
from software engineering and focused on end-to-end verification of our data products
(and entire data system). This approach complements our previous work on testing
sources and transformations and complementes them with final verification that our data
systems work reliably.
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CHAPTER 4

Ownership with 
rapid response
Developing scalable ownership and 
efficient incident management 
processes to quickly resolve issues.



As the data stack grows in complexity, it’s no longer possible for one person to keep
everything in their head, and more often than not, the person who notices a problem is
not the right person to fix it. Simultaneously, the number of upstream and downstream
dependencies has exploded, making it challenging to locate the right upstream owner or
notify impacted stakeholders. Well-defined ownership and incident management
processes can help with this by clarifying who’s responsible, and how they’re notified and
streamlining the process around incident and issue response.

The ideal end state

If you’re succeeding with your ownership initiatives you’re likely to see one or more
of the following impacts: (1) Time to resolution is reduced as issues are more often
brought directly in front of the relevant owners, (2) time spent debugging and
triaging issues are reduced as it’s easier to locate the relevant owner, (3) upstream
teams start taking ownership of data they produce improving the quality of data at
the source and (4) teams start to systematically improve their domains as data
quality KPIs are made more transparent

While there’s no one-fit-answer to ownership and incident management, working
through the four steps below will set you up well no matter if you’re a 5-person data
team or a data team in the Fortune 500.

1. Getting started with ownership

2. Defining ownership

3. Activating ownership by alerting the right people with the right context

4. Adopting Incident management in your data team for rapid response

Getting started with ownership
Ownership can be daunting, as it’s both a technical and cultural challenge. If ownership
works well, boundaries of responsibility are clear, and ownership is brought into action –
both within and outside of the data team. If not, it’s only sporadically defined and rarely
actioned.

Whether you’re just getting started with ownership or have existing owner processes in
place already, we recommend thinking through these steps.
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1. Integrate metadata–before you begin, you need a central place where you define
ownership. In the most basic approach, this may be using a tool like dbt’s built-in
metadata. In a more sophisticated approach, this may be bringing all your data
assets together – from source systems to data warehouse tables and BI tools – in
a tool such as a data catalog

2. Define data products–start by identifying your most important data assets as data
products. After all, that’s where the stakes are highest and should be your starting
point for defining ownership

3. Assign ownership–assign ownership based on responsible teams or individuals,
ideally using existing ownership structures such as Google Groups

4. Deploy data controls–with ownership definitions in place, strategically place
monitors based on the owners’ domain knowledge of the data they own

5. Notify relevant owners–activate ownership through relevant alerting or
escalations to incident management tooling

Defining ownership
In the ideal world, you’d neatly group your stack into well-defined areas with clear
boundaries. But in reality, ownership lines can get blurry, so don’t be discouraged if you
can’t easily assign ownership to all assets. Data rarely stops or ends with the data team.
Instead, data is ingested from 1st and 3rd party data sources, loaded and transformed in
the data warehouse, and exposed to end-users in a BI tool or use cases such as ML/AI.

This is how we manage ownership at SYNQ:

● Well-defined ownership at the input layer–we ensure that ownership at sources
is clearly defined so that escalation paths to upstream engineering teams are
unambiguous, and so that they can be notified directly of issues on source
systems before any data transformations are done.

● Clearly defined boundaries on staging marts–within the staging and
transformation layer, our analytics engineers assign ownership of models based
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on dbt metadata definitions using the owner tag and dbt groups. We
enforce that ownership tags are set using CI checks.

● Stakeholder ownership on consumer-facing marts–for our consumer-facing data
marts and products, we’ve organized them into mart folders based on their use
case and assigned relevant owners such as our Technical Account Management
team who get notified if there are issues with data they rely on.

“More than 50% of our data assets above are already
encapsulated into data products making the ownership seamless
to define.”

The data lineage of an internal data product at SYNQ. Ownership can be mapped and overlaid across all
dependencies

The result is that we manage ownership of data across the entire company and not just
as something that’s owned by the analytics engineering team.

Below are step-by-step instructions for how to define ownership.

Use existing owner groups

Use groups that already exist in your company, such as Google Groups or Slack
team channels formed around existing teams. These will always be up-to-date as
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people leave or join without you having to manage groups for data ownership
specifically.

Defining ownership based on data products
Data products should be your starting point–while you may not want to set ownership for
all your data assets, we recommend you at least do it for important data. Having assets
with clear ownership makes it more likely that the right people act on issues or are
notified if the data they use is wrong. If you’ve defined data products with
well-established priority levels, the highest-priority data products are a great place to
start.

Ownership definitions will closely follow your data product definitions. For example

● The Marketing Attribution Data Product will be owned by marketing data

● The Users Data Product will be owned by analytics engineering

● The ARR Data Product will be owned by finance data

Case study: Ownership should be set at the right level

Set ownership at a too-high level and you risk that no individuals take responsibility.
For example, by defining the owner as “data-team” you risk the definition is too
broad to act on. Setting ownership on an individual level creates a lot of
accountability but little scalability. You run the risk that people move around to
different teams, go on holidays, or leave the company.

At SYNQ, we assign ownership based on teams and their associated Slack
channels. Where possible, we use dbt groups so we only have to keep ownership
metadata such as Slack channel updated in one place. As all alerts on input sources
go to one channel, we also assign individuals based on sources they own, so that
they’re tagged in Slack to bring attention to these issues.

Defining ownership using metadata
Use existing folder structures to tie into your existing architecture design

Use this option if you’ve already organized your dbt project or data warehouse schemas
to resemble your ownership structure, such as marketing, finance, and operations. With
folder-based ownership, you typically need less time to get set up, and as you add new
data models, they, by design, fall into an existing owner group, reducing your upkeep. If
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you work with non-technical stakeholders who don’t contribute to your code base, such
as business analysts or data stewards, this approach makes it easier for them.

Use dbt owner meta tags to manage ownership through code

dbt has built-in support for designating owners using the meta: owner tag. Owners are
displayed in dbt Docs, making it easy for everyone to see who’s responsible.

models:

- name: users

meta:

owner: "analytics-engineering"

You can extend this to dbt sources to define ownership to upstream teams. If issues

should own the issue.

An added benefit is that this approach lets you use CI checks, such as check-model tags
from the pre-commit dbt package, to ensure that each data model has an owner tag
assigned.

Use dbt groups to enable intentional collaboration

With dbt 1.5, dbt launched support for groups. Groups are helpful for larger dbt projects
where you want to encapsulate parts of the internal logic only to be accessible to
members of that group – similar to how you’d only expose certain end-points in a public
API to end-users. If a model’s access property is private, only owners within its group can
reference it.

models/marts/finance/finance.yml

groups:

- name: finance

owner:

# 'name' or 'email' is required; additional properties allowed

email: finance@acme.com

slack: finance-data

github: finance-data-team

models/schema.yml
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models:

- name: finance_private_model

access: private

config:

group: finance

# in a different group!

- name: marketing_model

config:

group: marketing

Defining cross-tool ownership
There are situations where you want to manage ownership across multiple tools – from
databases to multiple data warehouses and dashboarding tools. This is useful when you
want to find dashboards owned by specific teams or build out capabilities to notify
downstream impacted stakeholders when you have a data incident. Managing cross-tool
ownership in code can be difficult as there’s often no coherent way to define this. Tools
such as a data catalog or data reliability platform are built for this.

Notifying the right people
Data ownership doesn’t have to stop with the data team. Below, we’ll look at ways you
can notify: (1) the data team, (2) upstream teams, and (3) business stakeholders.

“One of the top pitfalls we see is when teams spend a lot of time
mapping out and defining ownership, but let it sit stale on a
Confluent page that gradually gets out of sync with reality.”

Managing alerts within the data team
Managing ownership within the data team is the most straightforward. Your team is in
control; typically, the tools are within the stack you manage. You can use your existing
ownership definitions to ensure the right owner knows about the right issue. The two
most effective ways to do this, assuming you use a communication tool like Slack, is by
tagging owners and routing alerts based on your ownership definitions:
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● Tagging owners – associate owners with Slack handles to tag groups or
individuals and drive awareness of issues.

● Routing alerts – tie Slack channels with ownership and send alerts to the relevant
team’s channel. This is a great way to overcome alert overload in the central
channel.

“As a rule of thumb, you’ll see the most impact once your data
team moves past a handful of people, and everybody no longer
has full visibility into all data assets.”

Notifying upstream teams
We typically see two kinds of upstream teams that produce data and need to be alerted
differently: technical teams, such as engineering, and non-technical teams, such as a
SalesOps team owning Salesforce customer data.

a. Technical teams – the alerts you send don’t need to look different from those in the
example from the data team above. If you’ve placed tests at your sources and detected
issues before any data transformations, engineers should be able to connect the dots
between the source and the error message and trace back the issues to their systems.
For larger teams with a clear split between teams that ingest data (e.g., data platform)
and teams that produce data (e.g., frontend engineers), it can be helpful to compliment
the error message with details about what event or service it relates to.

b. Non-technical teams – bringing ownership of quality of source systems to
non-technical teams is underrated. Too often, tedious input errors such as an incorrect
customer amount or a duplicate employee_id end up on the data team to debug, triage,
and find the right owner. With the right context, these teams can start owning this
without the data team being involved.

Case study: The cultural challenge of upstream ownership

One thing is starting to send alerts to an upstream team. But getting them to
consistently act on them is another challenge. “Before we started to send alerts to
our operations and lending team about faulty customer records, we got our COO to
buy into the initiative. Only then were we able to ensure that the team was
incentivized to act on and prioritize alerts from the data team”
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Notifying stakeholders
Sometimes, you can alert your stakeholders to notify them of issues proactively with
alerts similar to those you send to the data team. This works best if your stakeholders are
data-savvy teams, such as a group of analysts in a business domain.

“Sending Slack alerts to your marketing director that five rows are
failing a unique test on the orders data model is not the best
idea.”

The best way to notify impacted stakeholders is most often for the person with the
relevant context to “declare” it unless the stakeholder is technical. In most cases, we
recommend that the data owner notify the stakeholder directly and link to an ongoing
incident page so they can follow along on the issue resolution. Another way is displaying
issues directly in dashboards so end-users are aware of issues – but this can be more
risky and difficult to interpret for non-technical users and recommend you only use this
with caution.

At SYNQ, our Technical Account Managers rely on a ‘Usage Report’ data product to see
the usage across our customers’ workspaces. As our Technical Account Managers are
technical stakeholders, alerts on or upstream of this data product are sent directly to the
#tech-ops channel. This helps them be the first to know if data is unreliable and not
make decisions based on incorrect information.

Beware of alert overload

If you spam a Slack channel with alerts, chances are people will stop paying
attention to them. Preventing alert overload is solved throughout the data reliability
workflow – from architecture design to monitoring and testing deployment, and
alerting & ownership rules. Not all issues have to be sent to the #data-team Slack
channel. A better workflow is to be deliberate with what’s sent to the main alerting
channel. Issues on less critical data assets can be sent to a different channel, or not
sent as alerts at all, and managed in weekly backlog review.

Adopting Incident management
With adequate ownership in place, you’re well-positioned to start streamlining responses
to issues and adopting incident management for more severe issues.

If done well and combined with well-defined ownership definitions, this has several
benefits–(1) Time to resolution is slowed as the issues are brought to the right owners
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with the relevant context. (2) Important issues are prioritized based on established
incident management response processes. (3) Time spent resolving data issues is
reduced as ownership lines are less blurred. (4) You start building an institutionalized way
or adopting learnings from incidents and symmetrically improve.

There’s no set way to manage issues and incident response, and you should always look
to adapt to other ways of working in your companies. With that being said when adopting
incident management for rapid responses in data teams, we recommend working
through these five steps

1. Getting the data team on call

2. Detecting issues

3. Triaging issues

4. Handling the incident

5. Post-incident analysis

Getting the data team on call
Start by defining expectations from the data team for what it means to be on call. For
smaller data teams, this may be the sole data person being the “data responder duty” for
the week. For others, it may mean that relevant owners address issues within a
predefined SLA as they come up. For teams owning core business processes, this may
involve being paged or notified outside business hours, closely tied to the SLA definitions
of your data products. We recommend you consider them across these groups:

● Overseeing data-related incidents (e.g., P1 data product errors or failures in dbt
core pipelines)

● Managing smaller failures such as a dbt test warning to ensure they're addressed
promptly and maintain their relevance

If the existing ownership activation rules you’ve set up are not working out of hours, you
can create a “@slack-responder” group and only have the people on-call in it to avoid
tagging the entire data team when there are issues out of hours.

Be explicit about on-call expectations

If you’re not specific about expectations for on-call (e.g., we only look at issues
within business hours), people will start adopting different expectations which can
create an uneven workload across the team.

At SYNQ, our data platform powers core in-product functionality such as our
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Quality Analytics tab. If there are issues here, we strive to detect the issue within an
hour and resolve it within a few hours.

Detecting issues
An incident begins when something goes wrong—whether it’s a critical dbt job failing, a
table no longer receiving new data, or an SQL test for data integrity breaking down. At
this point, it’s still just an issue, and you should be able to achieve these three objectives:

1. Detect the issue promptly through predefined tests and monitors

2. Alert the appropriate person through the ownership model you’ve defined

3. Provide relevant context for resolution

“Without sufficient testing and monitoring in place, you’ll be
caught on the backfoot, only learning about issues when you’ve
critical system failures or issues detected directly by
stakeholders.”

The chapter goes into more detail about how to set up the right
monitoring to help you avoid this.

Triaging issues
When an alert is triggered, you should assess the situation thoroughly. The alert may not
provide all the context needed, and a system failure might be connected to other
relevant issues. At this stage, you should have an understanding of all other issues and
their connectivity. Internally at SYNQ, we always aim to be able to answer three
questions:

1. Scope–Is this an isolated failure, or is it related to other issues?

2. Impact–What is the potential effect on critical data products and assets?

3. Severity–Does this involve data being unavailable, corrupted, or unreliable?
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Example summary card–system-wide issue impacting critical data products

Answering these questions provides the context needed to evaluate the incident's
urgency and decide whether it warrants a full incident response. This triage step helps
separate critical issues from minor ones that don’t require full incident management.

“An efficient triage workflow should alert relevant team members
using your ownership definitions and offer a comprehensive view
of failures and their context. This enables data engineers and
analysts to assess issue severity and interrelations effectively.”

Linking incidents to data products, or your other business-critical datasets is especially
useful, as it highlights the potential impact of each issue and automatically identifies
affected datasets, streamlining the triage process. This is a process that can otherwise
be nearly impossible to do, especially if you’ve many hundreds of data assets
downstream of an issue.

Once you’re able to answer these questions, we recommend that you set clear
expectations levels closely tied to your on-call setup. At SYNQ, we use the following
benchmarks for our MTTD (mean time to detect) and MTTR (mean time to resolve).

Severity MTTD (mean time to detect) MTTR (mean time to resolve)

P1 1h asap (hours)

P2 12h 1d

P3 24h 3d

P4 24h 7d

SYNQ’s internal MTTD and MTTR metrics
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If your data team or engineering team already uses an incident management tool like
PagerDuty, Opsgenie, or incident.io, we recommend you link your data-related issues to
these, so that an alert can be automatically linked to existing workflows, as well as bring
on core metadata around the impact directly to the existing platforms.

Handling the incident
While there’s no universal approach to handling data-related incidents, a structured and
well-documented incident management process significantly helps make the response
smoother and more effective.

When to declare an incident

Not all issues should be incidents but erring on the side of declaring too many
rather than too few incidents gives you a tracable log of issues, where if something
goes wrong, you can go back and look at what happened last time. You can always
adjust the incident severity and prioritize it accordingly.

Creating a dedicated space for communication (such as a document, a Slack channel, or
an incident in an external tool) ensures that stakeholders are kept in the loop and avoids
having to switch between multiple apps and tabs, allowing you to focus your efforts on
identifying and resolving the root cause of the issue.

At SYNQ, we use these steps for coordinating key communication and root cause
analysis.

● Inform stakeholders promptly, focusing on the owners of critical data assets
impacted.

● Organize data team efforts by clearly tracking who is responsible for each part of
the issue.

● Attach GitHub pull requests to monitor the fixes made and their deployment
status.

● Look for similar past incidents to learn from how they were handled.

● Document key steps taken and insights gained during the root cause analysis.

Each of these steps will be much easier with well-defined data products and ownership in
place–you’ll know who to communicate or escalate issues to, you’ll be able to see if
important data products are impacted downstream, and have a log to trace down
previous related incidents, and how they were solved last time.
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Post-incident analysis
It can be tempting to set an incident aside once resolved, but doing so may mean
missing valuable insights and failing to establish processes to prevent it from
reoccurring—or leaving someone else to grapple with a similar issue later on.

For lower-severity incidents, such as a test failure, follow-up checklists with assigned
task owners can help ensure that guardrails are put in place to prevent recurrence. For
more critical incidents, like a critical data product failure, a postmortem review can offer
deeper insights and guide process improvements.

INC-123: Data Product Incident Title

Key Information Timestamps

+---------------------+--------------+
+-----------------------+---------------+

| Data Product | … | | Reported at | …
|

| Priority | P1, P2, … | | Impact started at | …
|

| SLA | 99.9%, … | | Resolved at | …
|

+---------------------+--------------+
+-----------------------+---------------+

Ownership & Teams Durations

+---------------------+--------------+
+-----------------------+---------------+

| Product Owner | … | | Time to Identify | …
|

| Slack Channel | #team-name | | Time to Fix | …
|

+---------------------+--------------+
+-----------------------+---------------+

Related Incidents Useful Links

+--------------------------+ +--------------------------+

| INC-456 | | Incident Homepage |

| INC-789 | | Slack Channel |

+--------------------------+ +--------------------------+

Summary

+-------------------------------------------------------------+

| Summary of incident impact on "Marketing Attribution" data |

55



| product affecting downstream assets… |

+-------------------------------------------------------------+

Incident Timeline

+---------------------+-----------------+----------------------------+

| Date | Time | Event |

+------------+--------+-------------------------------------------------+

| 2024-01-01 | 12:00 | Reported by Data Engineer |

| 2024-01-01 | 12:30 | Priority escalated to P1 |

| 2024-01-02 | 12:00 | Incident Resolved |

+------------+--------+-------------------------------------------------+

Root Cause Mitigators

+--------------------------+ +-----------------------------+

| - Missing upstream checks | | - Add source freshness |

| - No quality assurance | | - Raise priority of source |

| in source system | | data product |

+--------------------------+ +-----------------------------+

Risks Follow-up Actions

+--------------------------+ +-----------------------------+

| - Low ownership of | | - Add review with core |

| source data quality | | engineering team |

| - Weak completeness SLIs | | - Raise priority of issue |

+--------------------------+ +-----------------------------+

Example template for a post-mortem of a critical data incident

Additionally, a periodic review of incident trends can reveal patterns—such as recurring
errors in specific data assets—or highlight imbalances such as specific upstream teams
being responsible for a disproportionally large amount of issues.

You should tie these metrics together with your wider data reliability workflow and be
able to measure metrics such as

● Mean time to resolution – what’s the average time from an issue is detected to it
being resolved, broken down by severity

● # issues and incidents by team – are there specific teams or team members who
have an outsized number of incidents. And how do these trace back (e.g., are
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some source systems systematically triggering incidents outside the data team’s
control)

● Issue to incident rate – to identify if there are low signal data controls in place
that could potentially be removed

Read the next chapter to understand how you can establish feedback loops and learning
processes to continuously enhance data reliability practices.
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CHAPTER 5

Continuous 
Improvement
Establishing feedback loops and 
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enhance data reliability practices.



While it’s common for engineering teams to have established a set of metrics to monitor
the performance, uptime, and velocity over time, it’s less common for data teams. It is
increasingly important to be able to report on the SLA, performance, and uptime of your
data as you take on business-critical data products–but even if the main output of your
team is dashboards and analysis for decision-making, it’s still a good idea to establish
benchmarks for when data should be ready and feedback loops for learning.

Here are some indicators that it’s time to put metrics in place

● Business-critical data – Your team now owns data products like customer-facing
dashboards where any downtime impacts customers directly.

● Data quality perception – You’re hearing complaints about data “unreliability” or
slow dashboard readiness without being able to systematically pinpoint issues.

● Inconsistent data quality – You’re seeing inconsistencies across data teams and
want to establish consistent, higher standards.

● External accountability – You need to objectively assess data quality and
dependencies for regulators or external board members.

● Low signal-to-noise controls – You want to understand and improve the ratio of
data control alerts that indicate real business issues.

Get buy-in outside the data team for your metrics

If it’s only the data team that cares about the metrics you picked, you’ve likely
picked the wrong ones. Get buy-in across stakeholders who are impacted by the
metric and understand how they’re impacted. For example, a product or account
management team may be directly impacted if a customer-facing dashboard is
down and contractually committed with an SLA towards the customers. Work
closely with these teams on

Picking the right metrics
With your use case in mind, you should assess a list of metrics that you can track. It helps
to group them into key areas–if your goal is to improve the SLA of key data products,
focus on High-level metrics and SLIs. If your goal is to improve the usability of data, focus
on Usability-related metrics.
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“Measuring metrics such as test model test coverage without a
clear end goal in mind can create a false sense of security and
lead teams to optimize toward the wrong goals”

Metric Group Metric Description

High-Level Coverage % of assets with required data controls in place

Quality Score / SLA % of SLIs passing, calculated as (passed SLIs) / (total SLIs)

Specific Quality (SLIs) Accuracy Data reflects real-world facts

Completeness All required data is present and available

Consistency Data is uniform across systems and sources

Uniqueness No duplicate records exist within the dataset

Timeliness Data is updated and remains fresh

Validity Data conforms to required formats and business rules

Usability Ownership Defined % of assets with a defined owner

Priority Level % of assets with an assigned priority level

Data Product
Association % of assets belonging to a data product

Description % of assets with a description

Active Users Number of users actively interacting with the asset

Dashboard Load Time Average time for dashboards to load

Operational Metrics Mean Time to Resolution Average time to resolve incidents

Mean Time to Detection Average time to detect an incident

Number of Incidents Total incidents impacting data products

Number of Issues Total issues logged (not escalated to incidents)

The issue-to-incident
rate The signal-to-noise ratio for different data controls

Consider the metric availability

If you’re just starting, you likely have little to no metrics at all. Some metrics will be
easier to get – for example, if you have existing tests and monitors in place, you’ll
be able to get the group these into SLIs. On the other hand, if you don’t have an
established incident management process in place, tracking incident mean time to
resolution may not be the right place to start.
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Selecting your North Star metrics
Start with just a few metrics based on the use case you have in mind. If you support a
business-critical data product such as a customer-facing dashboard, you’ll likely want to
be able to track the coverage and quality score/SLA. It’s important to consider both – if
you’re only tracking quality score/SLA without considering the coverage of data controls,
you’ll establish a false sense of security of the actual quality of the underlying data.

With this in mind, start decomposing your key metrics into dimensions. In the example
below, you can see that SLA is only satisfied for 4 of the last 12 weeks. But this is largely
due to the Revenue Forecasting data product consistently falling below the SLA target,
giving you a good sense of where to focus and improve.

Establishing service level indicators (SLIs)
Think about SLIs as groups of data quality controls. By grouping the SLIs you can zoom in
on if there are specific areas that are causing the SLA to fall behind. The six SLI areas we
identified earlier provide a good starting point for grouping your existing data controls
and are also the ones we’ve decided to use internally at SYNQ.

● Accuracy: Ensures data correctly represents real-world facts (e.g.,
accepted_values test for valid statuses, custom SQL checks for calculated
metrics).

● Completeness: Confirms all necessary data is present (e.g., not_null test for
critical columns, row count checks).

● Consistency: Verifies uniform data across sources (e.g., relationships test to
check foreign key integrity, unique test across datasets).

● Uniqueness: Ensures no duplicate entries exist (e.g., unique test on primary key
columns).
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● Timeliness: Checks data freshness and update frequency (e.g., dbt source

freshness test, custom timestamp lag checks).

● Validity: Confirms data adheres to formats and rules (e.g., accepted_values
test for categorical data, regex-based custom tests for formatting).

With clearly established SLIs, you can go a step further to understand what’s causing the
SLA to fall behind for our Revenue Forecasting data product.

With these insights at hand, the next step is clear – you should focus on the timeliness of
data, especially for sources feeding into the Revenue Forecasting data product to reach
your SLA goals.

In our case, we equally weigh all SLIs as components to calculate the SLA. In some cases,
you want to set different SLI levels for each SLI. For example, for an ML model, fresh data
may be less important causing you to accept a 95% threshold in terms of times that data
is loaded in time while you have a lower tolerance for completeness or accuracy issues,
causing you to set the SLI target to 99.9%.

Tracking and obtaining the metrics
You may already have the data available to start measuring the key metrics, or you may
be starting from scratch uncovering where data lives in source systems, or starting by
defining processes to define the metrics.

As you build out the metrics, do it with the following four principles in mind
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1. Metrics – select metrics that fit the business outcome you’re optimizing for

2. Action – the insights your metrics provide should lead to action

3. Segment – metrics should be segmentable by key dimensions (owner, data
product, …)

4. Trend – your metrics should be measured consistently and measurable over time

Below are some ways how you can obtain the data based on the tools you use.

High-level group Metrics How to obtain

High-level Coverage, Quality Score/SLA Export from dbt artifacts, dashboards from data
observability tools

Specific quality (SLIs) Accuracy, Completeness,
Consistency, Uniqueness, Timeliness,
Validity

dbt test results, dbt artifacts, data quality
monitoring tools (e.g., SYNQ, Great Expectations)

Usability % Ownership Defined, % Priority
Level, % Belonging to a Data
Product, % Descriptions, Number of
Active Users

Data catalog exports (e.g., Atlan, Collibra), manual
assessments, usage logs

Operational metrics Mean Time to Resolution, Number of
Incidents, Number of Issues

Incident management tools (e.g., PagerDuty,
Opsgenie), internal ticketing system reports

“Internally at SYNQ, we’ve automated the SLA, coverage, and SLI
tracking, so that we can monitor and report on the uptime on all
data products at any given time. This helps make sure that
monitoring uptime is not an afterthought, but instead something
we review regularly.”

The 2024 MAD (ML, AI & Data) Landscape gives a good overview of all tools and
vendors across data and AI tooling.

Operationalizing insights
You’ll want to put the insights you uncover from monitoring data quality into action.
Whether it’s to improve a particular area, share with stakeholders how you’re improving,
or something else.
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While there’s no one-fit-all solution, we’ve seen these work well.

Automated accountability with a weekly email digest – being the person having to slide
into other teams’ Slack channels to tell them that their data quality is not great is not
always fun (we’ve been there). Scheduling an automated weekly email with the quality
score over time and per owner domain and data product is a great way to bring
accountability without one person having to point fingers (It does wonders when people
see their team scoring lower than their peers).

Be religious about including metadata – the most common reason we see data quality
initiatives failing is that everybody owns data quality, and thus, nobody feels responsible.
Only by enforcing metadata such as data product definitions and owner or domain can
you hold people accountable for data quality in their area. Build it into key processes
such as using the check-model tags CI checks to enforce that certain tags are present.

Beware of the broken windows theory – the broken windows theory can be traced back
to criminology and suggests that if you leave a window broken in a compound,
everything else starts to fall apart. If residents start seeing that things are falling apart,
they stop caring about other things. We can draw the same analogy to data quality.

If you’ve got many failing tests, it’s often a symptom that the signal-to-noise ratio is too
low or that you don’t implement tests in the right places. Don’t let failing data checks sit
around. Instead, set aside dedicated time, such as “fix-it Fridays” every other week, to
work on these types of issues and remove data checks that are no longer needed.

Case Study: Present metrics to stakeholders with a regular cadence

If you’re only sporadically looking at your data quality metrics, it’s harder to
establish a benchmark and systemically track improvements. The data team at
Lunar meets with key C-level stakeholders every 3 months to update them on data
quality KPI progress, new initiatives, and any regulatory risks.

Create run books for data quality – if you’re in a larger team, include clear steps around
addressing each data quality dimension so it’s clear for everyone. For example, if the
Timeliness score is low, you can recommend steps such as adding a dbt source freshness
check or an automated freshness monitor.

Data Product reliability workflow for continuous improvement
If you’ve made it this far, you’ve understood the key components of building a reliable
data stack – from defining data use cases as products, setting ownership & severity,
deploying strategic tests & monitors, and establishing quality metrics.
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Maintaining a reliable, high-quality data platform is not a one-off exercise but requires
continuous investment.

New data use cases should be defined as data products with ownership and severity
clearly defined.

Tests and monitors should be evaluated on an ongoing basis based on quality metrics,
adding new checks in cases where issues are caught by stakeholders, removing low
signal-to-noise tests, and keeping teams that score low on quality metrics accountable.

If you have questions about specific chapters or want to book a free consulting session
with the authors of this guide, Petr Janda or Mikkel Dengsøe, .
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schedule it here

https://calendly.com/d/2ds-hhw-n3w/chat-with-petr-and-mikkel
https://calendly.com/d/z7b-s92-vpg/free-consulting-session-data-reliability


Book free consulting session

Book a platform demo: synq.io

Read the guide online: synq.io/guide

Discover more insights: synq.io/blog

https://calendly.com/d/z7b-s92-vpg/free-consulting-session-data-reliability
http://synq.io
http://synq.io/guide
http://synq.io/blog





